Multimode fibres (MMFs) have recently demonstrated a great potential towards discovering numerous new and complex processes that have never been observed, so far [1]. Among others, Kerr self-cleaning has unveiled the ability of graded-index (GRIN) fibres to produce a quasi-single-mode beam, despite the incoherent multimode propagation involving a large number of modes [2]. A clean beam with its improved brightness can then be obtained at the output of the GRIN MMFs. This phenomenon is enabled by the combined effect of self-imaging and Kerr nonlinearity, followed by a nonlinear nonreciprocity of the mode coupling process. This high-intensity self-transformation can also be described by a thermodynamic approach, whenever a large number of modes is involved [3–4].
Light-by-Light Control Enabled by Incoherent Beam Superpositions in Multimode Fibres / Mansuryan, T.; Lobato, Y. Arosa; Tonello, A.; Ferraro, M.; Zitelli, M.; Mangini, F.; Sun, Y.; Krupa, K.; Wetzel, B.; Wabnitz, S.; Couderc, V.. - (2023), pp. 1-1. (Intervento presentato al convegno 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) tenutosi a Munich, Germany) [10.1109/CLEO/Europe-EQEC57999.2023.10231395].
Light-by-Light Control Enabled by Incoherent Beam Superpositions in Multimode Fibres
Ferraro, M.;Zitelli, M.;Mangini, F.;Sun, Y.;Wabnitz, S.;Couderc, V.
2023
Abstract
Multimode fibres (MMFs) have recently demonstrated a great potential towards discovering numerous new and complex processes that have never been observed, so far [1]. Among others, Kerr self-cleaning has unveiled the ability of graded-index (GRIN) fibres to produce a quasi-single-mode beam, despite the incoherent multimode propagation involving a large number of modes [2]. A clean beam with its improved brightness can then be obtained at the output of the GRIN MMFs. This phenomenon is enabled by the combined effect of self-imaging and Kerr nonlinearity, followed by a nonlinear nonreciprocity of the mode coupling process. This high-intensity self-transformation can also be described by a thermodynamic approach, whenever a large number of modes is involved [3–4].File | Dimensione | Formato | |
---|---|---|---|
Mansuryan_Light-by-Light_2023.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
147.97 kB
Formato
Adobe PDF
|
147.97 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.